
Mrs.M.Humera Khanam, Mr.Palli Suryachandra, Prof.K.V.Madhu Murthy / International Journal of

Engineering Research and Applications (IJERA) ISSN: 2248-9622

www.ijera.com

Vol. 1, Issue 4, pp.1751-1754

1751 | P a g e

Dependency Parsing for Telugu

Mrs.M.Humera Khanam, Mr.Palli Suryachandra, Prof.K.V.Madhu Murthy

Department of Computer Science,SVUCE,SV University, Tirupathi,India)

Department of Computer Science,SVUCE,SV University, Tirupathi,India)

Department of Computer Science,SVUCE,SV University, Tirupathi,India)

Abstract

In this paper we present our experiments in parsing for

Telugu language. We explore two data driven parsers Malt

and MST and compare the results of both the parsers. We

describe the data and parser settings used in detail. Some of

these are specific to either one particular or all the Indian

Languages. The average of best unlabeled attachment,

labeled attachment and labeled accuracies are 88.43%,

69.71% and 70.01% respectively .We are also presented

which parser gives best results for different sentence types

in Telugu.

 Keywords – Telugu, Malt, MST

1.INTRODUCTION

Parsing is one of the major tasks which helps in

understanding the natural language. It is useful in several

natural language applications. Machine translation, anaphora

resolution, word sense disambiguation, question answering,

summarization are few of them. This led to the development

of grammar-driven, data-driven and hybrid parsers. Due to

the availability of annotated corpora in recent years, data

driven parsing has achieved considerable success. The

availability of phrase structure Treebank’s for English has

seen the development of many efficient parsers. Telugu

Language is morphologically rich free word order language.

It has been suggested that free word order language can be

handled better using the dependency based framework than

the constituency based one (Hudson, 1984;Shieber, 1985;

Mel’čuk, 1988,Bharati et al.,1995).As a result, dependency

annotation using paninian framework is started for telugu

Language (Begum et al., 2008). There have been some

previous attempts at parsing Hindi following a constraint

based approach (Bharati et al.1993, 2002, 2008b).Due to

availability of tree-bank for Hindi, some attempts are made

at building statistical (Bharati et al., 2008a, Husain et

al.,2009; Ambati et al., 2009) and hybrid parsers (Bharati et

al., 2009). In all these approaches both syntactic and

semantic cues are explored to reduce the confusion between

ambiguous dependency tags. In this paper we describe our

experiments in parsing Telugu in detail. Some of these are

specific to either one particular or all the Indian Languages

and some in general to any kind of language. We explore

two data-driven parsers Malt and MST and compare results

of both the parsers. The average of best unlabeled

attachment, labeled attachment and labeled accuracies are

90.52%, 67.93% and 69.25% for malt and

89.65%,64.99% and 65.17% for MST parsers respectively.

The paper is arranged as follows, in section 2, we present

general information about data,we describe our approach for

parsing. Section 3 describes the data and parser settings for

Telugu language. We present our results in section 4. We

conclude our paper in section 5.

2. Approch

Malt Parser:

Malt Parser (Nivre et al., 2006) implements which has

two essential components:

A transition system for mapping sentences into

dependency trees

A classifier for predicting the next transition for every

possible system configuration

Transition Systems:

MaltParser comes with a number of built-in transition

systems, but we limit our attention to the two systems that

have been used in the parsing experiments: the arc-eager

projective system first described in Nivre (2003) and the

non-projective transition system based on the method

described by Covington (2001). For a more detailed analysis

of this and other transition systems for dependency parsing,

see Nivre (2008).A configuration in the arc-eager projective

system contains a stack holding partially processed tokens,

an input buffer containing the remaining tokens, and a set of

arcs representing the partially built dependency tree. There

are four possible transitions (where top is the token on top of

the stack and next is the next token in the input buffer):

LEFT-ARC (r): Add an arc labeled r from

 next to top; pop the stack.

RIGHT-ARC (r): Add an arc labeled r from

 top to next; push next onto the stack.

REDUCE: Pop the stack.

SHIFT: Push next onto the stack. support

We performed our experiments on malt parser version

1.4.1. Malt parser provides options for Arc-Standard, Arc-

Eager, Covington Projective, Cov-ington Non-Projective,

Planar and Stack parsing algorithms. It also provides options

for LIBSVM and LIBLINEAR learning algorithms. We

experimented with different combinations of these

Mrs.M.Humera Khanam, Mr.Palli Suryachandra, Prof.K.V.Madhu Murthy / International Journal of

Engineering Research and Applications (IJERA) ISSN: 2248-9622

www.ijera.com

Vol. 1, Issue 4, pp.1751-1754

1752 | P a g e

algorithms to arrive at the best settings.

Features, Feature selection and Templates:

An extensive list of features is prepared which we thought

are appropriate in helping to form a better parse. Best

settings for each data set are selected with a simple forward

selector. The simple forward selector runs by appending the

feature to template file one by one seeing when it meets the

given criteria. A set of algorithms and classifiers are to be

provided prior to the forward selector. We include the

corresponding feature in the template file if the LAS

increase and UAS does not decrease. We have used

LIBLINEAR and LIBSVM classifiers and found out the

LIBLINEAR has achieved slightly better accuracies over the

LIBSVM. This is because of the new version of Malt parser

has updated the LIBSVM and LIBLINEAR packages. A 5

fold cross validation has been done for selecting the best

template, best algorithm and best classifier for Telugu

Language data. From the set of morphological information

provided along with the data, vibhakti and tam has helped in

improving accuracies (Bharati et al., 2008; Ambati et al.,

2009, 2010a).

MST Parser:

The parser should work with Java 1.4 and 1.5.

This is the parser described in the following papers

-Multilingual Dependency Parsing with a Two-Stage

 Discriminative Parser

-Online Learning of Approximate Dependency Parsing

 Algorithms

-Non-projective Dependency Parsing using Spanning

 Tree Algorithms

-Online Large-Margin Training of Dependency Parsers

Telugu is a Dravidian language which is agglutinative in

nature. We have taken Telugu annotated data,which contains

sentences1651words7920Unique words2964chunks5983

We used two data driven parsers Malt (Nivre et al.,

2007a), and MST (McDonald et al., 2005b) for our

experiments. Malt is a classifier based Shift/Reduce parser.

It uses arc-eager, arc-standard, covington , projec-tive and

convington non-projective algorithms for parsing

(Nivre,2006). History-based feature models are used for

predicting the next parser action (Black et al.,1992). Support

vector machines are used for mapping histories to parser

actions (Kudo and Matsumoto,2002). It uses graph

transformation to handle non-projective trees (Nivre and

Nilsson, 2005).MST uses Chu-Liu-Edmonds (Chu and

Liu,1965; Edmonds, 1967) Maximum Spanning Tree

algorithm for non-projective parsing and Eisner's algorithm

for projective parsing (Eisner, 1996). It uses online large

margin learning as the learning algorithm (McDonald et al.,

2005a).Malt provides an xml file, where we can specify the

features for the parser. But for MST, these features are hard

coded. Accuracy of the labeler of MST is very low. We tried

to modify the code but couldn't get better results.

3.Settings:

Input Data:

Both the parsers take CoNLL format as input. So, we have

taken data in CoNLL format for our experiments. The

FEATS column of each node in the data has 6 fields. These

are six morphological features namely category, gender,

number, person, vibhakti5 or TAM6 markers of the node.

We experimented considering different combinations of

these fields for both the parsers. For Telugu language

vibhakti and TAM fields gave better results than others.

This is similar to the settings of Bharati et al. (2008a). They

showed that for Hindi, vibhakti and TAM markers help in

dependency parsing where as gender,number, person

markers won't.

Malt Parser Settings:

 Malt provides options for four parsing algorithms arc-

eager, arc-standard, covington projective,covington non-

projective. We experimented with all the algorithms for all

the three languages for both the tagsets. Tuning the SVM

model was difficult; we tried various parameters but could

not find any fixed pattern. Finally, we tested the

performance by adapting the CoNLL shared task 2007

(2007b) settings used by the same parser for various

languages (Hall et. al, 2007). For feature model also after

exploring general useful features, we experimented taking

different combinations of the settings used in CoNLL shared

task 2007 for various languages. For Telugu language,the

following are the best settings.

For Parsing Arc eager

For Learning Liblinear

MST Parser Settings:

MST Parser is a non-projective dependency parser that

searches for maximum spanning trees over directed graphs.

Models of dependency structure are based on large-margin

discriminative training methods. Projective parsing is also

supported. MST parser contains the parameters train, train-

file, model-name, training-iterations, decode-type, training-

k, loss-type, order. By doing many experiments, for the

following values, the parser gives best accuracies.

Training-k 6

Decode type proj

Order 1

Mrs.M.Humera Khanam, Mr.Palli Suryachandra, Prof.K.V.Madhu Murthy / International Journal of

Engineering Research and Applications (IJERA) ISSN: 2248-9622

www.ijera.com

Vol. 1, Issue 4, pp.1751-1754

1753 | P a g e

4.Experiments and Results:

We merged both the training and development data and

did 5-fold cross-validation for tuning the parsers. We

extracted best settings from the cross validation

experiments. These settings are applied on the test data. Size

of the test data is 150 sentences.

Results on Test Data:

Malt parser:

UAS 90.52

LAS 67.93

LA 69.25

MST Parser :

UAS 89.56

LAS 65.23

LA 66.25

Evalution for sentences :

We broadly divided sentences in Telugu as the following

categories with our linguistic knowledge in Telugu. We

have given examples for each sentence types.

Simple Sentences : Simple sentences contain no

conjunction

Ex : nEnu ikkadaku vachAnu.

Compound Sentences : Compound sentences contain two

statements that are connected by a conjunction

Ex : athanu vachAdu mariyu tirigi vellAdu.

Complex Sentences :Complex sentences contain a

dependent clause and at least one independent clause.

Ex : eEme, nA kUthauru,pEru ramya.

Compound - Complex Sentences : Compound - complex

sentences contain at least one dependent clause and more

than one independent clause.

Ex:ramu,pOyina nela ikadaku vachi,bahumathi

tEsukunnadu mariyu selavu pI vellAdu.

We have classified our sentences based on the sentence

types. We have given these classified sentences for testing

to the two parsers. For simple sentences, both parsers had

given good results, but for other sentence types they have

shown less accuracies. We presented our results below.

Sentence type Malt MST

Simple 81.14 76.23

Compound 63.45 59.23

Complex 58.94 54.63

Compound-

Complex

53.87 49.23

we found that both parsers were showing less accuracies for

complex, compound-complex type sentences because they

have long sentences, including many punctuations like

comma, period, and other symbols. These punctuation

symbols increases the complexity for giving best accuracies

for the parsers.

5.Conclusions and Future Directions :

For Telugu language, Malt performed better over MST.

We have modified the implementation of MST to handle

vibhakti and TAM markers for labeling. We observed that

even during unlabeled parsing some features which might

not be useful in parsing are being used. We would like to

modify the implementation to do experiments with features

for unlabeling also. For getting best best accuracies for long

sentences, we need to divide the sentences as phrases by

using punctuations, which are present in the sentences. It

also involves more linguistic knowledge in Telugu

grammar. This is the future work we need to work for

getting best accuracies.

References:

R. Begum, S. Husain, A. Dhwaj, D. M. Sharma, L.Bai,

and R. Sangal. 2008. Dependency annotation scheme for

Indian languages. In Proceedings of IJCNLP-2008.

http://www.iiit.net/techreports/2007_78.pdf

B. R. Ambati, P. Gade and C. GSK. 2009. Effect of

Minimal Semantics on Dependency Parsing. In Proceedings

of RANLP 2009 Student Research Workshop.

S. M. Shieber. 1985. Evidence against the context

freeness of natural language. In Linguistics and Philosophy,

p. 8, 334–343.

Ryan McDonald , Kevin Lerman , Fernando

Pereira.Multilingual Dependency Analysis with a Two-

Stage Discriminative Parser.

Ryan McDonald , Fernando Pereira .Online Learning of

Approximate Dependency Parsing Algorithms.

Ryan McDonald , Fernando Pereira , Kiril Ribarov , Jan

Haji? .Non-projective Dependency Parsing using Spanning

Tree Algorithms.

Ryan McDonald , Koby Crammer , Fernando Pereira

.Online Large-Margin Training of Dependency Parsers.

J. Nivre and J. Nilsson. 2005. Pseudo-projective

dependency parsing. In Proc. of ACL-2005, pages 99–106.

J. Nivre. 2006. Inductive Dependency Parsing. Springer.

Mrs.M.Humera Khanam, Mr.Palli Suryachandra, Prof.K.V.Madhu Murthy / International Journal of

Engineering Research and Applications (IJERA) ISSN: 2248-9622

www.ijera.com

Vol. 1, Issue 4, pp.1751-1754

1754 | P a g e

J. Nivre and J. Hall and S. Kubler and R. McDonald and

J. Nilsson and S. Riedel and D. Yuret. 2007b.The CoNLL

2007 Shared Task on Dependency Parsing. In

Proceedings of the CoNLL Shared Task Session of

EMNLP-CoNLL 2007.

J. Nivre, J. Hall, J. Nilsson, A. Chanev, G. Eryigit,

S.Kübler, S. Marinov and E Marsi. 2007a. Malt Parser: A

language-independent system for data-driven dependency

parsing. Natural Language Engineering, 13(2), 95-135.

J. Nivre and R. McDonald. 2008. Integrating Graph

Based and Transition-Based Dependency Parsers.In Proc.

Of ACL-2008.

A. Mel'čuk. 1988. Dependency Syntax:Theory and

Practice, State University, Press of New York.

R. McDonald, F. Pereira, K. Ribarov, and J. Hajic.2005b.

Non-projective dependency parsing using spanning tree

algorithms. Proceedings of HLT/EMNLP, pp. 523–530.

R. McDonald, K. Crammer, and F. Pereira. 2005a.Online

large-margin training of dependency parsers. In Proceedings

of ACL 2005. pp. 91–98.

P. Mannem and H. Chaudhry. 2009. Insights into Non-

projectivity in Hindi. In Proceedings of ACL-IJCNLP

Student paper workshop.

T. Kudo and Y. Matsumoto. 2002. Japanese dependency

analysis using cascaded chunking. In CoNLL-2002. pp. 63–

69.

R. Hudson. 1984. Word Grammar, Basil Blackwell,108

Cowley Rd, Oxford, OX4 1JF, England.

J. Hall, J. Nilsson, J. Nivre, G. Eryigit, B. Megyesi,M.

Nilsson and M. Saers. 2007. Single Malt or Blended? A

Study in Multilingual Parser Optimization. In Proceedings

of the CoNLL Shared Task Session of EMNLP-CoNLL

2007, 933—939.

J. Eisner. 1996. Three new probabilistic models for

dependency parsing: An exploration. In Proceedings of

COLING-96, pages 340–345.

J. Edmonds. 1967. Optimum branchings. Journal of

Research of the National Bureau of Standards,71B:233–240.

Y.J. Chu and T.H. Liu. 1965. On the shortest

arborescence of a directed graph. Science Sinica, 14:1396–

1400.

Q. Dai, E. Chen, and L. Shi. 2009. An iterative approach

for joint dependency parsing and semantic role labeling. In

Proceedings of the 13th Conference on Computational

Natural Language Learning(CoNLL-2009), June 4-5,

Boulder, Colorado,USA.June 4-5.

E. Black, F. Jelinek, J. D. Lafferty, D.M.Magerman,R.

L.Mercer, and S. Roukos. 1992. Towards history-based

grammars: Using richer models for probabilistic parsing. In

Proc. of the 5th DARPA Speech and Natural Language

Workshop, pages 31–37.

A. Bharati and R. Sangal. 1993. Parsing Free Word Order

Languages in the Paninian Framework.Proc. of ACL:93.

A. Bharati, V. Chaitanya and R. Sangal. 1995. Natural

Language Processing: A Paninian Perspective,Prentice-Hall

of India, New Delhi, pp. 65-106.

A. Bharati, R. Sangal, T. P. Reddy. 2002. A Constraint

Based Parser Using Integer Programming,In Proceedings of

ICON, 2002.www.iiit.net/techreports/2002_3.pdf

A. Bharati, S. Husain, D. M. Sharma, and R. Sangal.2009.

Two stage constraint based hybrid approach to free word

order language dependency parsing. In Proceedings of the

11th International Conference on Parsing Technologies

(IWPT09). Paris. 2009.

